An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

Authors

  • Driss Sbibih Department of Mathematics, Faculty of Sciences, University Mohammed First
Abstract:

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters within a rational cubic Bézier curve should be determined by minimizing a maximum error. We finish by proving and justifying the efficiently of the approaching method with some comparative numerical and graphical examples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hermite Geometric Interpolation by Rational Bézier Spatial Curves

Polynomial geometric interpolation by parametric curves became one of the standard techniques for interpolation of geometric data. An obvious generalization leads to rational geometric interpolation schemes, which are a much less investigated research topic. The aim of this paper is to present a general framework for Hermite geometric interpolation by rational Bézier spatial curves. In particul...

full text

Lagrange geometric interpolation by rational spatial cubic Bézier curves

In the paper, the Lagrange geometric interpolation by spatial rational cubic Bézier curves is studied. It is shown that under some natural conditions the solution of the interpolation problem exists and is unique. Furthermore, it is given in a simple closed form which makes it attractive for practical applications. Asymptotic analysis confirms the expected approximation order, i.e., order six. ...

full text

Approximate Bézier curves by cubic LN curves

In order to derive the offset curves by using cubic Bézier curves with a linear field of normal vectors (the so-called LN Bézier curves) more efficiently, three methods for approximating degree n Bézier curves by cubic LN Bézier curves are considered, which includes two traditional methods and one new method based on Hausdorff distance. The approximation based on shifting control points is equi...

full text

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

full text

On interpolation by Planar cubic G2 pythagorean-hodograph spline curves

In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is ...

full text

Optimal Geometric Hermite Interpolation of Curves

Bernstein{B ezier two{point Hermite G 2 interpolants to plane and space curves can be of degree up to 5, depending on the situation. We give a complete characterization for the cases of degree 3 to 5 and prove that rational representations are only required for degree 3. x1. Introduction and Overview We consider recovery of curves from irregularly sampled data. If the curves are to be represent...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1 (WINTER)

pages  29- 38

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023